Name: \qquad

Graphing Rational Functions: Pre-calculus
Directions: Please graph each of the following functions carefully. Be sure to fill in all required information.
REMEMBER: Graphs may cross horizontal or slant asymptotes, but should never EVER cross a vertical asymptote.

1. $f(x)=\frac{3 x^{2}}{x^{2}-4}$

$$
\begin{aligned}
& x \text { intercepts: } \frac{0}{z}=3 x^{2} \sqrt{x^{2}}=\sqrt{0} \\
& x=0 \quad(0,0)
\end{aligned}
$$

y-intercepts:

$$
(0,0)
$$

Vertical Asymptotes:

$$
\begin{gathered}
x^{2}-4=0 \\
\sqrt{x^{2}}=\sqrt{4} \\
x=2
\end{gathered} \quad x=2 \quad x=-2
$$

Horizontal or Slant Asymptotes:

\[

\]

$$
\left.\times \frac{4}{4} \right\rvert\, \frac{5}{3.6}
$$

x-intercepts:

$$
\begin{aligned}
& 0=2 x^{2}+1 \\
& -1 \\
& -\frac{2 x^{2}}{2}
\end{aligned}
$$

y-intercepts:

$$
\frac{2(0)^{2}+1}{0-2}=\frac{1}{-2} \quad(0,-1 / 2)
$$

Vertical Asymptotes:

$$
x=2
$$

Horizontal or Slant Asymptotes:
No H. Nita

2 201

$$
y=2 x+4
$$

$$
\begin{aligned}
& 0=x^{2}-3 x^{-4} \\
& 0=(x-4)(x+1)
\end{aligned}
$$

3. $g(x)=\frac{x^{2}-3 x-4}{2 x^{2}+4 x}$
x-intercepts: $\quad(4,0)(-1,0)$
y-intercepts: $\quad \frac{0^{2}-3(0)-4}{2(0)^{2}+4(0)}=\frac{-4}{0}$
No. V. Asym,
Vertical Asymptotes: 5

$$
\begin{array}{lcc|c}
\qquad \begin{array}{c}
0=2 x^{2}+4 x \\
0=2 x(x+2)
\end{array} & x=0 \quad x=-2 \\
\text { Horizontal or Slant Asymptotes: } & x=\frac{x}{2} & -4 & y \\
n=2 & -3 & 2.33 \\
m=2 & & -2.5 & 3.9 \\
\hline & -1.5 & -1.8 \\
& & -1 & 0 \\
& & -0.5 & 1.5 \\
& 0.5 & -2.1 \\
& 1 & -1 \\
& 2 & -0.4
\end{array}
$$

4. $r(x)=\frac{x^{3}+x^{2}}{x^{2}-4} y(x+2)(x-2)$

$$
x^{3}+x^{2}=x^{2}(x+1)
$$

x-intercepts: $(0,0)(-1,0)$
y-intercepts: (0,0)

Vertical Asymptotes:

$$
x=-2 \quad x=2
$$

Horizontal or Slant Asymptotes:
No Ariz.

$$
\frac{x+1}{2} \quad y=x+1
$$

$x^{2}-4$

$$
\begin{array}{r}
=\frac{x^{3}+4 x}{x^{2}+4 x} \\
\frac{-x^{2}+4 x}{8 x}
\end{array}
$$

X	y
-5	-4.8
-4	-4
-3	-3.6
-2.5	-4.2
-1.5	0.6
-0.5	-0.3
0.5	-0.1
1	0.7
1.5	-3.2
2.5	9.7
3	7.2
4	6.7
5	7.1

5. $f(x)=\frac{x^{2}}{x^{2}-9}$

6. $f(x)=\frac{5 x+9}{x^{2}-3 x-18}$

$$
(x-6)(x+3)
$$

x-intercepts: $(-9 / 5,0)$ or $(-1,8,0)$
y-intercepts:

$$
\frac{5(0)+9}{0^{2}-3(0)-16}=\frac{9}{-18}=-\frac{1}{2} \quad(0,-1 / 2)
$$

Vertical Asymptotes:

$$
\begin{aligned}
& x=6 \\
& x=-3
\end{aligned}
$$

Horizontal or Slant Asymptotes:

$$
\begin{array}{c|c|c|c}
x & y & x & y \\
\hline-6 & -0.6 & 6.5 & 8.7 \\
-5 & -0.7 & 7 & 4.4 \\
-4 & -1.1 & 8 & 2.2 \\
-3.5 & -1.7 & 9 & 1.5 \\
\hline-2.5 & 0.8 & 10 & 1.1 \\
-1 & -0.3 & & \\
1 & -0.7 \\
2 & -0.95 \\
3 & -1.3 \\
4 & -2.1 \\
5 & -4.25 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l}
x & y \\
\hline-6 & -18.53 x^{3}+2=0 \\
-5 & -16.2 \\
-4 & -14.6 \\
-3 & -15.8 \\
-2.5 & -25.6 \\
\hline-2 & 22 \\
-1 & 0.2 \\
\hline
\end{array}
$$

8. $f(x)=\frac{x+4}{x^{2}+2 x-8}$

$$
(x+4)(x-2)
$$

x-intercepts;
(-4,0) Doernt work
because of the denominator
y-intercepts:

$$
\begin{aligned}
& \text { tercepts: } \quad(0,-1 / 2)
\end{aligned}
$$

Vertical Asymptotes: $\frac{x+4}{(x+4)(x-2)}$
$\frac{x=\operatorname{pap}}{\text { gap }} \quad x=2$
Horizontal or Slant Asymptotes:

$$
y=0
$$

x	y
-6	-0.125
-5	-0.14
-4	$G A P$
-3	-0.2
-2	-0.25
-1	-0.33
1.5	-1
2.5	2
3	1
4	0.5

