Review- Miller 2016 1. Use the graph of f(x) to graph g(x).

$$g(x) = f\left(\frac{1}{2}x\right) + 2$$

Be sure to know all of the transformations

- · Horiz. Stretch by 2
- · then shift UP 2

3. Graph
$$g(x) = \frac{1}{2}|x-1|$$

4. Explain in words the translation from $f(x) \rightarrow g(x)$

#5-8: Given
$$f(x) = 3x - 1$$
 and $g(x) = x^2 - x - 6$

5-6. Find
$$f - g = 3x - 1 - (x^2 - x - 6)$$

7-8. Find g

X = 2 X = - 2

Find the domain

Find the domain

((-00, -2) U(-2, 3) U(3,00)

9-10: Given that $f(x) = x^2 + 1$ and $g(x) = \sqrt{2-x}$, Find $(f \circ g)(x)$

11-12. Find f(g(x)) and g(f(x)) and determine wheather the pair of functions given below are inverses of eachother.

$$f'(x) = 5x + 2$$
 and $g(x) = \frac{x-2}{5}$

and
$$g(x) = \frac{x-2}{5}$$
. $f(q(x) = 5(x-2)) + 2$

Yes, f(x) & g(x) are inverses of each other

